Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Cell Death Dis ; 14(12): 845, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114454

RESUMO

Glutathione synthetase (GSS) catalyzes the final step in the synthesis of glutathione (GSH), a well-established antioxidant. Research on the specific roles of the Gss gene during spermatogenesis remains limited due to the intricate structure of testis. In this study, we identified pachytene spermatocytes as the primary site of GSS expression and generated a mouse model with postnatal deletion of Gss using Stra8-Cre (S8) to investigate the role of GSS in germ cells. The impact of Gss knockout on reducing male fertility is age-dependent and caused by ferroptosis in the testis. The 2-month-old S8/Gss-/- male mice exhibited normal fertility, due to a compensatory increase in GPX4, which prevented the accumulation of ROS. With aging, there was a decline in GPX4 and an increase in ALOX15 levels observed in 8-month-old S8/Gss-/- mice, resulting in the accumulation of ROS, lipid peroxidation, and ultimately testicular ferroptosis. We found that testicular ferroptosis did not affect spermatogonia, but caused meiosis disruption and acrosome heterotopia. Then the resulting aberrant sperm showed lower concentration and abnormal morphology, leading to reduced fertility. Furthermore, these injuries could be functionally rescued by inhibiting ferroptosis through intraperitoneal injection of GSH or Fer-1. In summary, Gss in germ cells play a crucial role in the resistance to oxidative stress injury in aged mice. Our findings deepen the understanding of ferroptosis during spermatogenesis and suggest that inhibiting ferroptosis may be a potential strategy for the treatment of male infertility.


Assuntos
Ferroptose , Glutationa Sintase , Infertilidade Masculina , Testículo , Glutationa Sintase/deficiência , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Espermatócitos/metabolismo , Infertilidade Masculina/genética , Testículo/enzimologia , Testículo/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Ferroptose/genética , Técnicas de Inativação de Genes , Células Germinativas/citologia , Meiose/genética , Espermatogênese/genética , Acrossomo/patologia , Autofagia/genética , Masculino , Feminino , Animais , Camundongos , Fatores Etários
2.
Curr Protoc ; 3(10): e907, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37818879

RESUMO

Clickable glutathione is a glutathione-derived chemical probe designed to identify and analyze protein S-glutathionylation, a major cysteine oxidation in redox signaling. An engineered glutathione synthetase mutant (GS M4) is used to synthesize clickable glutathione in cells or in vitro, which affords utility via click chemistry to detect, identify, and quantify glutathionylation on individual or global proteins in biochemical and mass spectrometric analyses. The clickable glutathione approach is valuable for the unequivocal identification of glutathionylated cysteines, among many reversible cysteine oxoforms, via the direct enrichment and detection of glutathionylated proteins or peptides. Clickable glutathione, in combination with GS M4, has demonstrated utility in the mass-spectrometry-based discovery and profiling of new proteins and cysteines for glutathionylation in cell lines in response to physiologic and oxidative stress. The approach is versatile and applicable to validating the glutathionylation of proteins and cysteines in other biochemical analysis beside mass spectrometry. Here, we describe the applications of clickable glutathione and provide detailed protocols for the identification, profiling, and detection of glutathionylated proteins and cysteines. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Identification of glutathionylated cysteine in individual proteins in vitro Basic Protocol 2: Proteomic identification and quantification of glutathionylation Basic Protocol 3: Biochemical validation of glutathionylation in cells.


Assuntos
Cisteína , Proteômica , Cisteína/metabolismo , Proteômica/métodos , Processamento de Proteína Pós-Traducional , Glutationa/química , Glutationa/metabolismo , Proteínas/metabolismo , Glutationa Sintase/genética , Glutationa Sintase/química , Glutationa Sintase/metabolismo
3.
Am J Case Rep ; 24: e938396, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37050856

RESUMO

BACKGROUND Glutathione synthetase deficiency (GSD) is a rare autosomal recessive disorder caused by glutathione synthetase (GSS) gene variants that occur in 1 in 1 million individuals. The severe form of GSD is characterized by hemolytic anemia, metabolic acidosis with 5-oxoprolinuria, progressive neurological symptoms, and recurrent bacterial infections. This case report presents a male Japanese infant with severe hemolytic anemia and metabolic acidosis at birth caused by GSD, who developed progressive neurological symptoms on follow-up. CASE REPORT A Japanese male term infant developed severe hemolytic anemia and metabolic acidosis in the early neonatal period. We suspected GSD based on his symptoms and a high 5-oxoproline urine concentration. We began correcting his metabolic acidosis and administering vitamins C and E supplements. The patient required blood transfusion twice during the acute phase for hemolytic anemia. After age 1 month, he maintained good control of metabolic acidosis and hemolytic anemia. A definitive diagnosis of GSD was made based on high concentrations of 5-oxoproline in urine, low concentrations of glutathione and GSS activity in erythrocytes, and genetic testing. Several episodes of febrile convulsions were started at age 11 months, but none occurred after 2 years. At the last follow-up at age 25 months, metabolic acidosis and hemolytic anemia were well controlled, but he had mild neurodevelopmental delay. CONCLUSIONS This case report shows that GSD can present with severe hemolytic anemia and metabolic acidosis at birth, and manifest with subsequent neurological impairment despite early diagnosis and treatment. Therefore, a careful long-term follow-up that includes neurological evaluation is essential for patients with GSD.


Assuntos
Acidose , Anemia Hemolítica , Recém-Nascido , Lactente , Humanos , Masculino , Pré-Escolar , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Ácido Pirrolidonocarboxílico/urina , Seguimentos , Anemia Hemolítica/diagnóstico , Anemia Hemolítica/etiologia , Acidose/etiologia
4.
Appl Microbiol Biotechnol ; 107(9): 2997-3008, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36995384

RESUMO

The γ-glutamyl tripeptide glutathione (γ-Glu-Cys-Gly) is a low molecular thiol that acts as antioxidant in response to oxidative stress in eukaryotes and prokaryotes. γ-Glutamyl dipeptides including γ-Glu-Cys, γ-Glu-Glu, and γ-Glu-Gly also have kokumi activity. Glutathione is synthesized by first ligating Glu with Cys by γ-glutamylcysteine ligase (Gcl/GshA), and then the resulting dipeptide γ-glutamylcysteine is ligated with Gly by glutathione synthetase (Gs/GshB). GshAB/GshF enzymes that contain both Gcl and Gs domains are capable of catalyzing both reactions. The current study aimed to characterize GshAB from Tetragenococcus halophilus after heterologous expression in Escherichia coli. The optimal conditions for GshAB from T. halophilus were pH 8.0 and 25 °C. The substrate specificity of the Gcl reaction of GshAB was also determined. GshAB has a high affinity to Cys. γ-Glu-Cys was the only dipeptide generated when Glu, Cys, Gly, and other amino acids were present in the reaction system. This specificity differentiates GshAB from T. halophilus from Gcl of heterofermentative lactobacilli and GshAB of Streptococcus agalactiae, which also use amino acids other than Cys as glutamyl-acceptor. Quantification of gshAB in cDNA libraries from T. halophilus revealed that gshAB was overexpressed in response to oxidative stress but not in response to acid, osmotic, or cold stress. In conclusion, GshAB in T. halophilus served as part of the oxidative stress response but this study did not provide any evidence for a contribution to the resistance to other stressors.Key points Glutathione synthesis in Tetragenococcus halophilus is carried out by the two-domain enzyme GshAB. GshAB is inhibited by glutathione and is highly specific for Cys as acceptor. T. halophilus synthesizes glutathione in response to oxidative stress.


Assuntos
Dipeptídeos , Glutationa Sintase , Glutationa Sintase/genética , Dipeptídeos/genética , Dipeptídeos/metabolismo , Glutationa , Aminoácidos
5.
Proteins ; 90(8): 1547-1560, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35277888

RESUMO

Glutathione (GSH) is synthesized in two ATP-dependent reactions by glutamate-cysteine ligase (Gcl) and glutathione synthetase (Gs). Myxococcus xanthus, a gram-negative bacterium belonging to δ-proteobacteria, possesses mxGcl and mxGs, which have high sequence identity with the enzymes from plants and bacteria, respectively. MxGcl2 was activated by Mn2+ , but not by Mg2+ , and stabilized in the presence of 5 mM Mn2+ or Mg2+ . Sequence comparison of mxGcl2 and Brassica juncea Gcl indicated that they have the same active site residues, except for Tyr330, which interacts with Cys and which in mxGcl2 is represented by Leu267. The substitution of Leu267 with Tyr resulted in the loss of mxGcl2 activity, but that with Met (found in cyanobacterial Gcls) increased the mxGcl2 affinity for Cys. GSH and its oxidized form GSSG equally inhibited the activity of mxGcl2; the inhibition was augmented by ATP at concentrations >3 mM. Buthionine sulfoximine inactivated mxGcl2 with Ki  = 2.1 µM, which was lower than those for Gcls from other organisms. The mxGcl2 activity was also suppressed by pyrophosphate and polyphosphates. MxGs was a dimer, and its activity was induced by Mg2+ but strongly inhibited by Mn2+ even in the presence of 10 mM Mg2+ . MxGs was inhibited by GSSG at Ki  = 3.6 mM. Approximately 1 mM GSH was generated with 3 units of mxGcl2 and 6 units of mxGs from 5 mM Glu, Cys, and Gly, and 10 mM ATP. Our results suggest that GSH production in M. xanthus mostly depends on mxGcl2 activity.


Assuntos
Glutamato-Cisteína Ligase , Myxococcus xanthus , Trifosfato de Adenosina , Glutamato-Cisteína Ligase/química , Glutamato-Cisteína Ligase/genética , Glutationa/química , Dissulfeto de Glutationa , Glutationa Sintase/química , Glutationa Sintase/genética
6.
Pharmacogenomics ; 23(1): 61-79, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866404

RESUMO

Clopidogrel is an antiplatelet drug commonly used to prevent coagulation. This review aimed to investigate the effect of polymorphisms of G6PD, GCLC, GCLM, GSS, GST, GSR, HK and GLRX genes on clopidogrel during phase II metabolism through exploring previous studies. The results revealed that low glutathione plasma levels caused by several alleles related to these genes could affect the bioactivation process of the clopidogrel prodrug, making it unable to inhibit platelet aggregation perfectly and thus leading to severe consequences in patients with a high risk of blood coagulation. However, the study recommends platelet reactivity tests to predict clopidogrel efficacy rather than studying gene mutations, as most of these mutations are rare and other nongenetic factors could affect the drug's efficacy.


Assuntos
Clopidogrel/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Polimorfismo de Nucleotídeo Único , Proteínas de Transporte/genética , Clopidogrel/metabolismo , Resistência a Medicamentos , Glucosefosfato Desidrogenase/genética , Glutamato-Cisteína Ligase/genética , Glutationa Sintase/genética , Glutationa Transferase/genética , Hexoquinase/genética , Humanos
7.
Lab Med ; 53(3): e59-e61, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34791353

RESUMO

Glutathione synthetase (GSS) deficiency is a rare disorder, occurring with a frequency of less than 1 in 100,000 individuals worldwide. The clinical presentation may vary from mild to severe, and manifestations include hemolytic anemia, hyperbilirubinemia, metabolic acidosis, neurological problems, and sepsis. Herein, we present a case of a newborn boy with the most severe phenotype of GSS deficiency, diagnosed based on clinical features and increased urinary 5-oxoproline levels determined via gas chromatography mass spectrometry (GCMS) testing.


Assuntos
Acidose , Erros Inatos do Metabolismo dos Aminoácidos , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glutationa Sintase/deficiência , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Humanos
8.
Appl Environ Microbiol ; 87(20): e0151821, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34347521

RESUMO

Acidithiobacillus ferrooxidans is a well-studied iron- and sulfur-oxidizing acidophilic chemolithoautotroph that is exploited for its ability to participate in the bioleaching of metal sulfides. Here, we overexpressed the endogenous glutamate-cysteine ligase and glutathione synthetase genes in separate strains and found that glutathione synthetase overexpression increased intracellular glutathione levels. We explored the impact of pH on the halotolerance of iron oxidation in wild-type and engineered cultures. The increase in glutathione allowed the modified cells to grow under salt concentrations and pH conditions that are fully inhibitory to wild-type cells. Furthermore, we found that improved iron oxidation ability in the presence of chloride also resulted in higher levels of intracellular reactive oxygen species (ROS) in the strain. These results indicate that glutathione overexpression can be used to increase halotolerance in A. ferrooxidans and would likely be a useful strategy on other acidophilic bacteria. IMPORTANCE The use of acidophilic bacteria in the hydrometallurgical processing of sulfide ores can enable many benefits, including the potential reduction of environmental impacts. The cells involved in bioleaching tend to have limited halotolerance, and increased halotolerance could enable several benefits, including a reduction in the need for the use of freshwater resources. We show that the genetic modification of A. ferrooxidans for the overproduction of glutathione is a promising strategy to enable cells to resist the oxidative stress that can occur during growth in the presence of salt.


Assuntos
Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Glutationa Sintase/genética , Ferro/metabolismo , Tolerância ao Sal/genética , Acidithiobacillus/efeitos dos fármacos , Escherichia coli/genética , Glutationa/biossíntese , Concentração de Íons de Hidrogênio , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/farmacologia
9.
PLoS Genet ; 17(6): e1009636, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34181654

RESUMO

Our previous studies showed that MAN3-mediated mannose plays an important role in plant responses to cadmium (Cd) stress. However, the underlying mechanisms and signaling pathways involved are poorly understood. In this study, we showed that an Arabidopsis MYB4-MAN3-Mannose-MNB1 signaling cascade is involved in the regulation of plant Cd tolerance. Loss-of-function of MNB1 (mannose-binding-lectin 1) led to decreased Cd accumulation and tolerance, whereas overexpression of MNB1 significantly enhanced Cd accumulation and tolerance. Consistently, expression of the genes involved in the GSH-dependent phytochelatin (PC) synthesis pathway (such as GSH1, GSH2, PCS1, and PCS2) was significantly reduced in the mnb1 mutants but markedly increased in the MNB1-OE lines in the absence or presence of Cd stress, which was positively correlated with Cd-activated PC synthesis. Moreover, we found that mannose is able to bind to the GNA-related domain of MNB1, and that mannose binding to the GNA-related domain of MNB1 is required for MAN3-mediated Cd tolerance in Arabidopsis. Further analysis showed that MYB4 directly binds to the promoter of MAN3 to positively regulate the transcript of MAN3 and thus Cd tolerance via the GSH-dependent PC synthesis pathway. Consistent with these findings, overexpression of MAN3 rescued the Cd-sensitive phenotype of the myb4 mutant but not the mnb1 mutant, whereas overexpression of MNB1 rescued the Cd-sensitive phenotype of the myb4 mutant. Taken together, our results provide compelling evidence that a MYB4-MAN3-Mannose-MNB1 signaling cascade regulates cadmium tolerance in Arabidopsis through the GSH-dependent PC synthesis pathway.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Lectinas de Ligação a Manose/genética , Manose/metabolismo , Proteínas Repressoras/genética , beta-Manosidase/genética , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cádmio/toxicidade , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Lectinas de Ligação a Manose/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/metabolismo , Transdução de Sinais , Poluentes do Solo/toxicidade , beta-Manosidase/metabolismo
10.
Toxins (Basel) ; 13(4)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917490

RESUMO

Beauvericin (BEA) and deoxynivalenol are toxins produced by Fusarium species that can contaminate food and feed. The aim of this study was to assess the effects of these mycotoxins on the maturation of oocytes from gilts and sows. Furthermore, the antioxidant profiles in the oocytes' environment were assessed. Cumulus-oocyte-complexes (COCs) from gilts and sows were exposed to beauvericin (BEA) or deoxynivalenol (DON) and matured in vitro. As an extra control, these COCs were also exposed to reactive oxygen species (ROS). The maturation was mostly impaired when oocytes from gilts were exposed to 0.02 µmol/L DON. Oocytes from sows were able to mature even in the presence of 5 µmol/L BEA. However, the maturation rate of gilt oocytes was already impaired by 0.5 µmol/L BEA. It was observed that superoxide dismutase (SOD) and glutathione (GSH) levels in the follicular fluid (FF) of gilt oocytes was higher than that from sows. However, the expression of SOD1 and glutathione synthetase (GSS) was higher in the oocytes from sows than in those from gilts. Although DON and BEA impair cell development by diverse mechanisms, this redox imbalance may partially explain the vulnerability of gilt oocytes to these mycotoxins.


Assuntos
Células do Cúmulo/efeitos dos fármacos , Depsipeptídeos/toxicidade , Peróxido de Hidrogênio/metabolismo , Oócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Tricotecenos/toxicidade , Ração Animal/microbiologia , Animais , Biomarcadores/metabolismo , Células Cultivadas , Células do Cúmulo/metabolismo , Feminino , Microbiologia de Alimentos , Fusarium/metabolismo , Glutationa/metabolismo , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Oócitos/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Sus scrofa
11.
Toxins (Basel) ; 13(2)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540648

RESUMO

The purpose of the study was to evaluate the short-term effects of aflatoxin B1 (AFB1 100 µg/kg feed) and sterigmatocystin (STC 1000 µg/kg feed) exposure individually and in combination (100 µg AFB1 + 1000 µg STC/kg feed) on the parameters of lipid peroxidation and glutathione redox system both in biochemical and gene expression levels in one-year-old common carp. Lipid peroxidation parameters were slightly affected, as significant differences were observed only in conjugated diene and triene concentrations. Reduced glutathione content decreased more markedly by STC than AFB1 or AFB1+STC, but glutathione peroxidase activity did not change. Expression of gpx4a, gpx4b, gss, and gsr genes was down-regulated due to STC compared to AFB1 or AFB1+STC, while an induction was found as effect of AFB1+STC in the case of gpx4a, but down-regulation for gpx4b as compared to AFB1. Expression of the glutathione biosynthesis regulatory gene, gss, was higher, but glutathione recycling enzyme encoding gene, gsr, was lower as an effect of AFB1+STC compared to AFB1. These results are supported by the changes in the expression of transcription factors encoding genes, nrf2, and keap1. The results revealed that individual effects of AFB1 and STC on different parameters are synergistic or antagonistic in multi-toxin treatment.


Assuntos
Aflatoxina B1/toxicidade , Carpas/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Esterigmatocistina/toxicidade , Animais , Carpas/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
12.
ACS Synth Biol ; 9(12): 3298-3310, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33232156

RESUMO

Protein-based nanocompartments found in nature have inspired the development of functional nanomaterials for a range of applications including delivery of catalytic activities with therapeutic effects. As glutathione (GSH) plays a vital role in metabolic adaptation and many diseases are associated with its deficiency, supplementation of GSH biosynthetic activity might be a potential therapeutic when delivered directly to the disease site. Here, we report the successful design and production of active nanoreactors capable of catalyzing the partial or complete pathway for GSH biosynthesis, which was realized by encapsulating essential enzymes of the pathway inside the virus-like particle (VLP) derived from the bacteriophage P22. These nanoreactors are the first examples of nanocages specifically designed for the biosynthesis of oligomeric biomolecules. A dense packing of enzymes is achieved within the cavities of the nanoreactors, which allows us to study enzyme behavior, in a crowded and confined environment, including enzymatic kinetics and protein stability. In addition, the biomedical utility of the nanoreactors in protection against oxidative stress was confirmed using an in vitro cell culture model. Given that P22 VLP capsid was suggested as a potential liver-tropic nanocarrier in vivo, it will be promising to test the efficacy of these GSH nanoreactors as a novel treatment for GSH-deficient hepatic diseases.


Assuntos
Bacteriófago P22/metabolismo , Glutationa/biossíntese , Vírion/metabolismo , Biocatálise , Capsídeo/metabolismo , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Células HEK293 , Humanos , Cinética , Nanoestruturas/química , Pasteurella/genética , Estabilidade Proteica , Saccharomyces cerevisiae/genética
13.
Am J Physiol Cell Physiol ; 319(5): C910-C921, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32903032

RESUMO

Some patients treated for ductal carcinoma in situ (DCIS) of the breast will experience cancer recurrences, whereas other patients will not. Unfortunately, current techniques cannot identify which preinvasive lesions will lead to recurrent cancer. Because the mechanism of cancer recurrence is unknown, it is difficult to design a test that detects its activity. We propose that certain pentose phosphate pathway enzymes, glutathione synthesis enzymes, and RhoA cluster at the epithelial cell periphery before cancer recurrences. Enzyme clustering enhances metabolic flux. Using fluorescence microscopy, we show that phosphophorylated glucose transporter type-1, transketolase-like protein-1, glutathione synthetase, GTP-loaded RhoA, and RhoA accumulate as a peripheral layer near the epithelial cell surface in surgical biopsies of women who will suffer recurrences, but not in samples from women who will not experience recurrences as judged using 2×2 contingency tables. Machine-learning studies of phospho-glucose transporter type 1-labeled tissue sections of patients with DCIS demonstrated strong cross-validation and holdout performance. A machine study of individual cribriform, papillary, micropapillary, and comedo forms of DCIS demonstrated 97% precision and 95% recall in the detection of samples from women who will not experience a recurrence and 90% precision and 94% recall in the detection of lesions that will become recurrent. A holdout study of these patients showed 73% true negatives, 18% true positives, 4% false positives, and 4% false negatives at a 50% threshold. This work suggests mechanistic features of cancer recurrences that may contribute to a new clinical test distinguishing high from low-recurrence risk in patients with DCIS.


Assuntos
Adenocarcinoma/diagnóstico , Neoplasias da Mama/diagnóstico , Carcinoma Ductal de Mama/diagnóstico , Carcinoma Papilar/diagnóstico , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1/genética , Recidiva Local de Neoplasia/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/cirurgia , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/cirurgia , Carcinoma Papilar/genética , Carcinoma Papilar/patologia , Carcinoma Papilar/cirurgia , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Feminino , Transportador de Glucose Tipo 1/metabolismo , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Humanos , Aprendizado de Máquina , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Fosforilação , Prognóstico , Transporte Proteico , Estudos Retrospectivos , Transdução de Sinais , Transcetolase/genética , Transcetolase/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
14.
Reprod Domest Anim ; 55(10): 1418-1424, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32744352

RESUMO

Phthalates, including di-(2-ethylhexyl)phthalate (DEHP), are common industrial chemicals in the environment. Recent evidence indicates that DEHP and its active metabolite mono-(2-ethylhexyl)phthalate (MEHP) negatively modulate reproductive functions and induce reactive oxygen species. Ascorbic acid (AA) is a dietary requirement for primates, and it acts as a potent free radical scavenger to protect tissues against oxidative stress. In this study, to investigate the toxic effects of MEHP on the follicle development and the beneficial role of AA, neonatal mouse ovaries were treated with different concentrations of MEHP with or without AA for 6 days. Then, the follicle constitution and oxidative status were compared in different groups. Results showed MEHP accelerated primordial follicle recruitment by increasing the percentage of primary and secondary follicles and decreasing the percentage of primordial follicles in the ovaries. Moreover, MEHP-induced ovarian oxidative stress by significantly increasing malondialdehyde (MDA) concentration and the expression of GSS and SOD1. When ovaries were co-administrated with MEHP and AA, follicle constitution was normalized, and the oxidative status was significantly decreased. These results suggested that AA ameliorated MEHP-induced ovarian oxidative stress and follicular dysregulation, which attested the clinical significance of AA for ovary protection in the case of MEHP exposure.


Assuntos
Ácido Ascórbico/farmacologia , Dietilexilftalato/análogos & derivados , Folículo Ovariano/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Dietilexilftalato/toxicidade , Feminino , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Malondialdeído/análise , Camundongos Endogâmicos ICR , Técnicas de Cultura de Órgãos , Ovário/efeitos dos fármacos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
15.
Appl Microbiol Biotechnol ; 104(9): 4093-4107, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32162090

RESUMO

2-Phenylethanol (2-PE) is an important flavor compound but also impairs cell growth severely, which in turn blocks its bioproduction. However, the molecular mechanism of 2-PE tolerance is unclear. In this study, a superb 2-PE stress-tolerant and producing yeast, Candida glycerinogenes, was selected to uncover the underlying mechanism of 2-PE tolerance. We discovered that Hap5 is an essential regulator to 2-PE resistance, and its induction by 2-PE stress occurs at the post-transcriptional level, rather than at the transcriptional level. Under 2-PE stress, Hap5 is activated and imported into the nucleus rapidly. Then, the nuclear Hap5 binds to the glutathione synthetase (gsh2) promoter via CCAAT box, to induce the expression of gsh2 gene. The increased gsh2 expression contributes to enhanced cellular glutathione content, and consequently alleviates ROS accumulation, lipid peroxidation, and cell membrane damage caused by 2-PE toxicity. Specifically, increasing the expression of gsh2 is effective in improving not just 2-PE tolerance (33.7% higher biomass under 29 mM 2-PE), but also 2-PE production (16.2% higher). This study extends our knowledge of 2-PE tolerance mechanism and also provides a promising strategy to improve 2-PE production.


Assuntos
Proteínas Fúngicas/genética , Glutationa Sintase/genética , Álcool Feniletílico/farmacologia , Pichia/efeitos dos fármacos , Fatores de Transcrição/genética , Membrana Celular/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica , Glutationa/metabolismo , Peroxidação de Lipídeos , Pichia/genética , Pichia/metabolismo , Regiões Promotoras Genéticas , Espécies Reativas de Oxigênio/metabolismo
16.
Oxid Med Cell Longev ; 2020: 1079129, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32064020

RESUMO

Inflammation and oxidative stress are pivotal mechanisms for the pathogenesis of ischemia and reperfusion injury (IRI). Vagus nerve stimulation (VNS) may participate in maintaining oxidative homeostasis and response to external stimulus or injury. We investigated whether the in vivo VNS can protect the liver from IRI. In this study, hepatic IRI were induced by ligating the vessels supplying the left and middle lobes of the liver, which underwent 1 h occlusion followed with 24 h reperfusion. VNS was initiated 15 min after ischemia and continued 30 min. Hepatic function, histology, and apoptosis rates were evaluated after 24 h reperfusion. Compared with the IRI group, VNS significantly improved hepatic function. The protective effect was accompanied by a reduction in histological damage in the ischemic area, and the apoptosis rate of hepatocytes has considerable reduction. To find the underlying mechanism, proteomic analysis was performed and differential expression of glutathione synthetase (GSS) and glutathione S-transferase (GST) was observed. Subsequently, test results indicated that VNS upregulated the expression of mRNA and protein of GSS and GST. Meanwhile, VNS increased the plasma levels of glutathione and glutathione peroxidases. We found that VNS alleviated hepatic IRI by upregulating the antioxidant glutathione via the GSS/glutathione/GST signaling pathway.


Assuntos
Glutationa/sangue , Hepatócitos/metabolismo , Hepatopatias/terapia , Traumatismo por Reperfusão/terapia , Estimulação do Nervo Vago , Animais , Antioxidantes/metabolismo , Apoptose/genética , Citocinas/metabolismo , Glutationa/biossíntese , Glutationa/metabolismo , Glutationa Peroxidase/sangue , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Hepatócitos/enzimologia , Fígado/enzimologia , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Hepatopatias/enzimologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Masculino , Estresse Oxidativo , Proteômica , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais/genética
17.
BMC Pulm Med ; 20(1): 19, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964358

RESUMO

BACKGROUND: Previous studies demonstrated an important role for connexin 43 (Cx43) in the regulation of apoptosis by influencing mitochondrial functions. This study aimed to investigate the relationship between Cx43 and lipopolysaccharide (LPS)-induced oxidative stress and apoptosis in human umbilical vein endothelial cells (HUVECs). METHODS: Western blot was performed to determine mitochondrial Cx43 (MtCx43) protein level and phosphorylation (p-MtCx43). Gap19, a selective Cx43 inhibitor, was used to examine the effects of Cx43 on LPS-induced oxidative stress and apoptosis in HUVECs. Expression of regulatory genes associated with oxidative stress was examined by quantitative polymerase chain reaction (qPCR) and Western blot. Apoptosis was assessed by flow cytometry. RESULTS: LPS stimulation resulted in increased levels of MtCx43 and p-MtCx43. Interestingly, Gap19 antagonized the upregulation of glutathione S-transferase Zeta 1 (GSTZ1) and cytochrome b alpha beta (CYBB), and the downregulation of antioxidant 1 (ATOX1), glutathione synthetase (GSS) and heme oxygenase 1 (HMOX1) induced by LPS or Cx43 overexpression. Moreover, the increased production of reactive oxygen species (ROS) and apoptosis elicited by LPS or Cx43 overexpression were reduced following treatment with Gap19. CONCLUSIONS: Selective inhibition of Cx43 hemichannels protects HUVECs from LPS-induced apoptosis and this may be via a reduction in oxidative stress production.


Assuntos
Apoptose/efeitos dos fármacos , Conexina 43/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/genética , Conexina 43/efeitos dos fármacos , Conexina 43/genética , Conexina 43/metabolismo , Proteínas de Transporte de Cobre/efeitos dos fármacos , Proteínas de Transporte de Cobre/genética , Regulação para Baixo , Técnicas de Introdução de Genes , Glutationa Sintase/efeitos dos fármacos , Glutationa Sintase/genética , Glutationa Transferase/efeitos dos fármacos , Glutationa Transferase/genética , Heme Oxigenase-1/efeitos dos fármacos , Heme Oxigenase-1/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipopolissacarídeos/farmacologia , Mitocôndrias/metabolismo , Chaperonas Moleculares/efeitos dos fármacos , Chaperonas Moleculares/genética , NADPH Oxidase 2/efeitos dos fármacos , NADPH Oxidase 2/genética , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
18.
Chemosphere ; 240: 124914, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31557642

RESUMO

Arsenic (As) contamination is one of the most daunting environmental problem bothering the whole world. Exploring a suitable bioremediation technique is an urgent need of the hour. The present study focusses on scrutinizing the ectomycorrhizal (ECM) fungus for its potential role in As detoxification and understanding the molecular mechanisms responsible for its tolerance. When exposed to increasing concentrations of external As, the ECM fungus H. cylindrosporum accumulated the metalloid intracellularly, inducing the glutathione biosynthesis pathway. The genes coding for GSH biosynthesis enzymes, γ-glutamylcysteine synthetase (Hcγ-GCS) and glutathione synthetase (HcGS) were highly regulated by As stress. Arsenic coordinately upregulated the expression of both Hcγ-GCS and HcGS genes, thus resulting in increased Hcγ-GCS and HcGS protein expressions and enzyme activities, with substantial increase in intracellular GSH. Functional complementation of the two genes (Hcγ-GCS and HcGS) in their respective yeast mutants (gsh1Δ and gsh2Δ) further validated the role of both enzymes in mitigating As toxicity. These findings clearly highlight the potential importance of GSH antioxidant defense system in regulating the As induced responses and its detoxification in ECM fungus H. cylindrosporum.


Assuntos
Arsênio/toxicidade , Glutationa/biossíntese , Hebeloma/efeitos dos fármacos , Micorrizas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Arsênio/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Teste de Complementação Genética , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Hebeloma/genética , Hebeloma/metabolismo , Inativação Metabólica , Mutação , Micorrizas/genética , Micorrizas/metabolismo , Saccharomyces cerevisiae/metabolismo , Poluentes do Solo/metabolismo
19.
Chemosphere ; 240: 124857, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31726599

RESUMO

Colorado potato beetle, Leptinotarsa decemlineata Say (coleoptera: chrysomelidae), is the important pest of potato all over the world. This insect pest is resistant to more than 50 active compounds belonging to various chemical groups. Potential of RNA interference (RNAi) was explored to knock down transcript levels of imidacloprid resistant genes in Colorado potato beetle (CPB) under laboratory conditions. Three important genes belonging to cuticular protein (CP), cytochrome P450 monoxygenases (P450) and glutathione synthetase (GSS) families encoding imidacloprid resistance were targeted. Feeding bio-assays were conducted on various stages of imidacloprid resistant CPB lab population by applying HT115 expressing dsRNA on potato leaflets. Survival rate of insects exposed to CP-dsRNA decreased to 4.23%, 15.32% and 47.35% in 2nd, 3rd and 4th instar larvae respectively. Larval weight and pre-adult duration were also affected due to dsRNAs feeding. Synergism of RNAi with imidacloprid conducted on the 2nd instar larvae, exhibited 100% mortality of larvae when subjected to reduced doses of GSS and CP dsRNAs along with imidacloprid. Utilization of three different dsRNAs against imidacloprid resistant CPB population reveal that dsRNAs targeting CP, P450 and GSS enzymes could be useful tool in management of imidacloprid resistant CPB populations.


Assuntos
Besouros/genética , Resistência a Medicamentos/genética , Genes de Insetos , Inseticidas/farmacologia , Larva/metabolismo , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Animais , Besouros/efeitos dos fármacos , Besouros/crescimento & desenvolvimento , Sistema Enzimático do Citocromo P-450/genética , Regulação para Baixo , Resistência a Medicamentos/efeitos dos fármacos , Glutationa Sintase/genética , Larva/efeitos dos fármacos , Larva/genética , Interferência de RNA/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento
20.
Fetal Pediatr Pathol ; 39(1): 38-44, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31198081

RESUMO

Introduction: Glutathione synthetase (GSS) deficiency is an autosomal recessive disorder (frequency < 1/1,000,000) with different varyingly severe clinical manifestations that include metabolic acidosis, hemolytic anemia, hyperbilirubinemia, neurological disorders and sepsis. Case report: This infant was small for gestational age, had hemolytic anemia, metabolic acidosis, bilateral subependymal pseudocysts and increased echogenicity of the basal ganglia. GSS deficiency was confirmed by genetic analysis. The patient also had unilateral right femur agenesis. Conclusion: By using next generation sequencing analysis, we identified a novel homozygous variant c.800G > A, p.Arg267Gln in the GSS gene of this patient. Femur agenesis had not previously been associated with GSS.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Anemia Hemolítica/genética , Glutationa Sintase/deficiência , Mutação/genética , Acidose , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Anemia Hemolítica/diagnóstico , Glutationa Sintase/genética , Humanos , Lactente , Recém-Nascido , Doenças do Recém-Nascido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...